The derivative of ln(x²) can be found using a couple of different approaches.
1. Using the Chain Rule:
The chain rule states that the derivative of a composite function f(g(x)) is f'(g(x)) * g'(x).
Here, we can consider ln(x²) as f(g(x)) where f(u) = ln(u) and g(x) = x².
The derivative of f(u) = ln(u) is f'(u) = 1/u. (See: Derivative of Natural Logarithm)
The derivative of g(x) = x² is g'(x) = 2x. (See: Power Rule)
Applying the chain rule: d/dx [ln(x²)] = (1/x²) * (2x) = 2/x.
2. Using Logarithmic Properties:
Before differentiating, we can simplify ln(x²) using the logarithmic property: ln(a^b) = b * ln(a).
Therefore, ln(x²) = 2 * ln(x).
Now, differentiating 2 * ln(x) is straightforward: d/dx [2 * ln(x)] = 2 * (d/dx [ln(x)]).
The derivative of ln(x) is 1/x. (See: Derivative of Natural Logarithm)
So, d/dx [2 * ln(x)] = 2 * (1/x) = 2/x.
Therefore, the derivative of ln(x²) is 2/x.
Important Note: This result is valid for x ≠ 0. While ln(x²) is defined for both positive and negative x (except 0), ln(x) is only defined for positive x. Therefore when taking the derivative and simplifying, the original domain might change.
Ne Demek sitesindeki bilgiler kullanıcılar vasıtasıyla veya otomatik oluşturulmuştur. Buradaki bilgilerin doğru olduğu garanti edilmez. Düzeltilmesi gereken bilgi olduğunu düşünüyorsanız bizimle iletişime geçiniz. Her türlü görüş, destek ve önerileriniz için iletisim@nedemek.page